If it's not what You are looking for type in the equation solver your own equation and let us solve it.
41m-10m^2+45=0
a = -10; b = 41; c = +45;
Δ = b2-4ac
Δ = 412-4·(-10)·45
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-59}{2*-10}=\frac{-100}{-20} =+5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+59}{2*-10}=\frac{18}{-20} =-9/10 $
| X2-3x-6=4 | | 1.5=2x+5x+3x | | 6/5=100/x | | 21=x+2x+12 | | 3x-12=-3x-36 | | m+2/5=2m-11/7 | | 0.3=2.4+y | | 5(n+2)=3/4(5+10n) | | 5x-2=13x+11 | | x2-7x-17=1 | | n+(n+4)=-56 | | 3(z+1)=4z-11 | | -6(x-4)+1=3(x-5) | | n+(n+2)=-56 | | 12=3(m+6) | | 5-2x=-4x-19 | | -4x+4=3x-11 | | 5x²-10x=0 | | 2x+3x-50=4x-28 | | x2+6x-21=6 | | 13x=12-x | | X2=4(3x-8) | | 7x+4=2x+4+5x | | (X-7)180;x=8 | | 3x-15-7x=-43 | | 8(x+4)+4=-7(x-11)-3 | | 2-5x+15=-2 | | 8(y-1)=-4y+4 | | 2(5x-4)=-1x-4 | | 5x+2=6x-32 | | 5x/5=30/5 | | 5+4x-12=9-8x-40 |